Abstract

In this study, one-dimensional (1D) and two-dimensional (2D) coupled Schrödinger-Boussinesq (SBq) equations are examined numerically. A local meshless method based on radial basis function-finite difference (RBF-FD) method for spatial approximation is devised. We use polyharmonic splines as radial basis function along with augmented polynomials. By using polyharmonic splines we avoid to choose optimal shape parameter which requires special algorithms in meshless methods. For temporal discretization, low-storage ten-stage fourth-order explicit strong stability preserving Runge Kutta method is used which gives more flexibility on temporal step width. L ∞ and L 2 error norms are calculated to show accuracy of the proposed method. Further, conserved quantities are monitoried during numerical simulations to see how good the proposed method preserves them. Stability of the proposed method is dicussed numerically. Some codes are developed in Julia programming language to achieve more speed up in numerical simulations. Obtained results and their comparison with some studies such as wavelet, difference schemes and Fourier spectral methods available in literature verify the efficiency and reliability of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.