Abstract

A local up-down symmetric tokamak equilibrium model is proposed. The model, with constant plasma shape parameters, is a special case of the more general Miller’s local model [R. L. Miller et al., Phys. Plasmas 5, 973 (1998)]. Correspondingly, the equilibrium is determined only by a given reference flux surface, the local safety factor, the local pressure profile, and the profile of local toroidal field function. Although it is not complete, the model is particularly suitable for analytically investigating the effect of plasma shape factors on the radially localized plasma modes, like reversed shear Alfvenic eigenmodes, ballooning mode, etc. As an example of the application, the residual zonal flow in a shaped plasma is evaluated, and the result is in qualitative agreement with the previous investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.