Abstract
The development of acoustic sensors that are compact, have simple read-out mechanisms, and have geometries that enable them to be inserted/embedded deep in materials is of great interest for acoustic-based imaging technologies and novel analytical instruments. Fiber-optic-based detectors are the most logical choice to satisfy these demands, but scaling down the size to sub-micrometer dimensions and uncovering transduction mechanisms that can be more robust than interferometric techniques in dynamic environments has been challenging. In this work, we demonstrate a non-interference-based acoustic ear that utilizes the movement of plasmonic nanoparticles embedded in the near field of a nanofiber optic. The modulated optical signal induced by sound waves can be read-out through transmission through the nanofiber or by tracking the scattering of the nanoparticles in the far field. By utilizing a thin, compressible cladding on the nanofibers, acoustic intensities of <10–8 W/m2 can be detected by the devices ove...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.