Abstract

We consider a singular perturbation problem for a system of nonlinear Schrodinger equations: $$ \begin{array}{l} -\varepsilon^2\Delta v_1 +V_1(x)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\varepsilon^2\Delta v_2 +V_2(x)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N), \end{array} \quad\quad\quad\quad\quad (*) $$ where N = 2, 3, μ1, μ2, β > 0 and V1(x), V2(x): RN → (0, ∞) are positive continuous functions. We consider the case where the interaction β > 0 is relatively small and we define for \({P\in{\bf R}^N}\) the least energy level m(P) for non-trivial vector solutions of the rescaled “limit” problem: $$ \begin{array}{l} -\Delta v_1 +V_1(P)v_1 = \mu_1 v_1^3 + \beta v_1v_2^2 \quad {\rm in}\,\,{\bf R}^N, \\ -\Delta v_2 +V_2(P)v_2 = \mu_2 v_2^3 + \beta v_1^2v_2 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x) >0 \quad {\rm in}\,\,{\bf R}^N, \\ \null\ v_1(x), \ v_2(x)\in H^1({\bf R}^N). \end{array} \quad\quad\quad\quad\quad\quad (**) $$ We assume that there exists an open bounded set \({\Lambda\subset{\bf R}^N}\) satisfying $$ {\mathop {\rm inf} _{P\in\Lambda} m(P)} < {\mathop {\rm inf}_{P\in\partial\Lambda} m(P)}. $$ We show that (*) possesses a family of non-trivial vector positive solutions \({\{(v_{1\varepsilon}(x), v_{2\varepsilon} (x))\}_{\varepsilon\in (0,\varepsilon_0]}}\) which concentrates—after extracting a subsequence en → 0—to a point \({P_0\in\Lambda}\) with \({m(P_0)={\rm inf}_{P\in\Lambda}m(P)}\). Moreover (v1e(x), v2e(x)) converges to a least energy non-trivial vector solution of (**) after a suitable rescaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call