Abstract
It was assumed proven that two-layer feedforward neural networks with t-1 hidden nodes, when presented with t input patterns, can not have any suboptimal local minima on the error surface. In this paper, however, we shall give a counterexample to this assumption. This counterexample consists of a region of local minima with nonzero error on the error surface of a neural network with three hidden nodes when presented with four patterns (the XOR problem). We will also show that the original proof is valid only when an unusual definition of local minimum is used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.