Abstract

We propose that a “local first” approach should be applied to the interpretation of provenance indicators in glacigenic sediments of all depositional ages, especially where the glacier flow path is poorly constrained and the records of potential source lithologies are incomplete. Provenance proxies, specifically U-Pb detrital zircon geochronology, of glacigenic sediments are commonly used to infer the size and distribution of past ice centers, which are in turn used to inform ancient climate reconstructions. Interpretations of these proxies often assume that similar provenance signals between glacigenic units of the same depositional age are evidence that they were deposited by the same glacier, even when those units are, not infrequently, separated by thousands of kilometers. Though glaciers are capable of transporting sediment great distances, this assumption is problematic as it does not acknowledge observations from the geologic records of Pleistocene ice sheets that show provenance proxies in glacial sediments are most likely to reflect proximal (within 100 km) sediment sources located along a specific flow path. In a “local first” approach, provenance indicators are first compared to local source lithologies. If the indicator cannot be attributed to proximal sources, only then should progressively more distal sources be investigated. Applying a local first approach to sediment provenance in ancient glacial systems may result in significant revisions to paleo ice sheet reconstructions. The effectiveness of the local first approach is demonstrated here by comparing new U-Pb detrital zircon dates from the Permo-Carboniferous glacigenic Wynyard Fm with progressively distal source lithologies along the glacier’s inferred flow path. The Wynyard Fm and source lithologies were compared using an inverse Monte-Carlo unmixing model (DZMix). All measured Wynyard Fm detrital zircon dates can be attributed to zircon sources within 33 km of the sample location along the glacier’s flow path. This interpretation of a proximal detrital zircon provenance does not conflict with the popular interpretation made from sedimentological observations that the Wynyard Fm was deposited by a large, temperate outlet glacier or ice stream that flowed south-to-north across western Tasmania. Overall, a local first approach to glacial sediment provenance, though more challenging than direct comparisons between glacigenic sedimentary deposits, has the potential to elucidate the complex histories and flow paths of glacial sedimentary systems of all depositional ages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call