Abstract

The goal of this paper is to show that some classes of partial differential functional equations admit a natural formulation as ordinary functional differential equations in infinite dimensional Banach spaces. Moreover, the equations thus obtained are driven by continuous right-hand sides satisfying the compactness assumptions required by the infinite-dimensional version of a Peano-like existence theorem. Two applications, one to a semilinear wave equation with delay and another one to a pseudoparabolic PDE in Mechanics, are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.