Abstract
A local discontinuous Galerkin method for solving Korteweg–de Vries (KdV)-type equations with non-homogeneous boundary effect is developed. We provide a criterion for imposing appropriate boundary conditions for general KdV-type equations. The discussion is then focused on the KdV equation posed on the negative half-plane, which arises in the modeling of transition dynamics in the plasma sheath formation [H. Liu, M. Slemrod, KdV dynamics in the plasma-sheath transition, Appl. Math. Lett. 17(4) (2004) 401–410]. The guiding principle for selecting inter-cell fluxes and boundary fluxes is to ensure the L 2 stability and to incorporate given boundary conditions. The local discontinuous Galerkin method thus constructed is shown to be stable and efficient. Numerical examples are given to confirm the theoretical result and the capability of this method for capturing soliton wave phenomena and various boundary wave patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.