Abstract
A local weighted discontinuous Galerkin gradient discretization method for solving elliptic equations is introduced. The local scheme is based on a coarse grid and successively improves the solution solving a sequence of local elliptic problems in high gradient regions. Using the gradient discretization framework we prove convergence of the scheme for linear and quasilinear equations under minimal regularity assumptions. The error due to artificial boundary conditions is also analyzed, shown to be of higher order and shown to depend only locally on the regularity of the solution. Numerical experiments illustrate our theoretical findings and the local method’s accuracy is compared against the non local approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.