Abstract

Automated timetabling is a challenging area in the timetabling and scheduling theory and practice, intensively addressed in research papers in the last two decades. There are three main classes of problems, which are usually studied: school timetabling, course timetabling and examination timetabling. In this report, we address a case study of the Curriculum-Based Course Timetabling (CB-CTT) problem, arising at Engineering Department of Sannio University. In general, the problem consists of finding a feasible weekly assignment of course lectures to rooms and time periods while respecting a wide range of constraints, which have to be either strictly satisfied (hard constraints) or satisfied as much as possible (soft constraints). The case study here addressed here has many special requirements due to local organizational rules. We were able to model the complex requirements by an Integer Programming formulation. The solution approach consists of using an MIP solver, integrated with two local branching heuristics tailored for the problem. The effectiveness of the proposed approach is illustrated by the computational results on two real instances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call