Abstract
This article presents a local-best harmony search algorithm with dynamic subpopulations (DLHS) for solving the bound-constrained continuous optimization problems. Unlike existing harmony search algorithms, the DLHS algorithm divides the whole harmony memory (HM) into many small-sized sub-HMs and the evolution is performed in each sub-HM independently. To maintain the diversity of the population and to improve the accuracy of the final solution, information exchange among the sub-HMs is achieved by using a periodic regrouping schedule. Furthermore, a novel harmony improvisation scheme is employed to benefit from good information captured in the local best harmony vector. In addition, an adaptive strategy is developed to adjust the parameters to suit the particular problems or the particular phases of search process. Extensive computational simulations and comparisons are carried out by employing a set of 16 benchmark problems from the literature. The computational results show that, overall, the proposed DLHS algorithm is more effective or at least competitive in finding near-optimal solutions compared with state-of-the-art harmony search variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.