Abstract

We create a baseline of the black hole (BH) mass (MBH) - stellar-velocity dispersion (sigma) relation for active galaxies, using a sample of 66 local (0.02<z<0.09) Seyfert-1 galaxies, selected from the Sloan Digital Sky Survey (SDSS). Analysis of SDSS images yields AGN luminosities free of host-galaxy contamination and morphological classification. 51/66 galaxies have spiral morphology. 28 bulges have Sersic index n<2 and are considered candidate pseudo bulges, with eight being definite pseudo bulges based on multiple classification criteria met. Only 4/66 galaxies show sign of interaction/merging. High signal-to-noise ratio Keck spectra provide the width of the broad Hbeta emission line free of FeII emission and stellar absorption. AGN luminosity and Hbeta line widths are used to estimate MBH. The Keck-based spatially-resolved kinematics is used to determine stellar-velocity dispersion within the spheroid effective radius. We find that sigma can vary on average by up to 40% across definitions commonly used in the literature, emphasizing the importance of using self-consistent definitions in comparisons and evolutionary studies. The MBH-sigma relation for our Seyfert-1 galaxies has the same intercept and scatter as that of reverberation-mapped AGNs as well as quiescent galaxies, consistent with the hypothesis that our single epoch MBH estimator and sample selection do not introduce significant biases. Barred galaxies, merging galaxies, and those hosting pseudo bulges do not represent outliers in the MBH-sigma relation. This is in contrast with previous work, although no firm conclusion can be drawn due to the small sample size and limited resolution of the SDSS images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.