Abstract

In current study, a method for achieving a load-independent output current with the ability to optimize the parameter tuning, which is applied to wireless power transfer (WPT) systems, is analyzed. The proposed technique is based on the immittance property in a passive resonant network (PRN) with the purpose of transforming a voltage/current resource into a current/voltage resource. This study determines an immittance conditions-qualified family of PRN, which is associated with a more appropriate topological description in WPT applications. Considering the resource and sink type, a comprehensive specification of the coupling coefficient-based design condition and operating point is carried out. Moreover, the parameters of each proposed topology are reconfigured by adjusting the proportion of active power to reactive power ratios as an index to optimize the topology size as well as a reduction of voltage/current stresses on their elements without changing the specified system-level parameters, such as the loosely coupled transformer operating frequency, and specified constant current outputs. The sample topology selection is also carried out with respect to the absorption of the parasitic components and achieving the inherent dc-blocked transformer. Zero-voltage-switching (ZVS) operation of the switches, minimum conduction losses of the rectifier diodes within an extensive variety of load variations, and capability of consistent generation of stable load-regulated current are also achieved. Analytical results show that the proposed compensation has the minimum output current fluctuation versus variations of the coupling coefficient and other parameters. Finally, the effectiveness of the proposed methodology is evaluated through simulations, and practical experiments, and compared with the conventional design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.