Abstract

The behavior of gene modules in complex synthetic circuits is often unpredictable1–4. Upon joining modules to create a circuit, downstream elements (such as binding sites for a regulatory protein) apply a load to upstream modules that can negatively affect circuit function1,5. Here we devise a genetic device named a load driver that mitigates the impact of load on circuit function, and we demonstrate its behavior in Saccharomyces cerevisiae. The load driver implements the design principle of time scale separation: inclusion of the load driver’s fast phosphotransfer processes restores the capability of a slower transcriptional circuit to respond to time-varying input signals even in the presence of substantial load. Without the load driver, we observe circuit behavior that suffers from 76% delay in response time and a 25% decrease in system bandwidth due to load. With the addition of a load driver, circuit performance is almost completely restored. Load drivers will serve as fundamental building blocks in the creation of complex, higher level genetic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.