Abstract
In this paper, the asymptotic stability of neural networks with time varying delay is studied by using the nonsmooth analysis, Lyapunov functional method and linear matrix inequality (LMI) technique. It is noted that the proposed results do not require smoothness of the behaved function and activation function as well as boundedness of the activation function. Several sufficient conditions are presented to show the uniqueness and the global asymptotical stability of the equilibrium point. Also, a high-dimensional matrix condition to ensure the uniqueness and the global asymptotical stability of equilibrium point can be reduced to a low-dimensional condition. The obtained results are easy to apply and improve some earlier works. Finally, we give two simulations to justify the theoretical analysis in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.