Abstract

In this survey, we give a friendly introduction from a graph theory perspective to the q -state Potts model. The Potts model is an important statistical mechanics tool for analyzing complex systems in which nearest neighbor interactions determine the aggregate behavior of the system. We present the surprising equivalence of the Potts model partition function and one of the most renowned graph invariants, the Tutte polynomial. This relationship has resulted in a remarkable synergy between the two fields of study. We highlight some of these interconnections, such as computational complexity results that have alternated between the two fields. The Potts model captures the effect of temperature on the system and plays an important role in the study of thermodynamic phase transitions. We discuss the equivalence of the chromatic polynomial and the zero-temperature antiferromagnetic partition function, and how this has led to the study of the complex zeros of these functions. We also briefly describe Monte Carlo simulations commonly used for Potts model analysis of complex systems. The Potts model has applications in areas as widely varied as magnetism, tumor migration, foam behaviors, and social demographics, and we provide a sampling of these that also demonstrates some variations of the Potts model. We conclude with some current areas of investigation that emphasize graph theoretic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.