Abstract

Solid polymer electrolyte (SPE) is a promising class of solid electrolytes for building All-solid-state lithium batteries (ASSLBs) due to their flexibility and compatibility with electrodes. However, the requirement of an elevated operating temperature (> 60 °C) and the high-voltage instability remain major drawbacks for the most commonly used poly(ethylene oxide) (PEO) SPEs. Alternatively, poly(butylene oxide) (PBO) is another member of the polyether family that shows significantly enhanced ionic conductivity at room temperature, but its application in ASSLBs is rarely investigated, probably due to challenges of engineering methodology and interfacial stability. Herein, we develop a solvent-free fabrication route for building PBO SPE membrane for application in ASSLBs with feasible performance near room temperature. We demonstrate a facile activation methodology to stabilize the electrode/electrolyte interface for the PBO based ASSLBs. As a result, the ASSLB with a LiFePO4 cathode delivers a stable specific capacity of ~ 140 mA h g−1 at 0.1 C with almost 100% retention after 100 cycles near room temperature. Moreover, despite the poor high-voltage stability of PEO, we found that the PBO SPE presents good compatibility with 4-V class cathodes without any additional coating, achieving a capacity retention of 94.6% over 100 cycles with a conventional LiCoO2 cathode at 60 °C. This work shall inspire new possibilities of dry SPEs development for ASSLBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call