Abstract

All-inorganic halide perovskite nanowires (NWs) are promising materials due to they have broad application prospects in the field of optoelectronics, with mixed-halide perovskite nanowires can change the optoelectronic properties by adjusting the halide ratio. Here, we experimentally investigated the two-process governed anion-exchange reaction in single-crystalline CsPbX3 micro- and nanowires. The critical parameters affecting the outcome of the reaction are identified as the reaction temperature, reaction time, and precursor concentrations. Upon examining the photoluminescence and morphology of the NWs, high-quality NWs were obtained by optimizing these critical parameters. The bandgap of the NWs can be tuned over the entire visible spectra (430–700 nm). In addition, photodetectors incorporating single NWs were fabricated, which demonstrated excellent responsivity under illumination. Our results expand the validity of liquid-phase anion exchange to the microscale, and lay the basis for liquid-processed optoelectronics and displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.