Abstract

In the design of the 150 kV High-Coherence Column, it was considered essential that the specimen be in ultra-high vacuum at liquid helium temperature for minimum radiation damage. It followed that the simplest solution was to make the entire region about the specimen at liquid helium temperature and to make the objective lens with a superconducting winding.For mechanical rigidity, two things were considered essential. First, a strong support structure for the liquid helium vessel and the objective lens. Second, the use of no liquid nitrogen but rather the use of helium vapor cooling for the radiation shields, leads and supports. The drawing, fig. 1, shows the helium vessel, 9-1/2-inches diameter by 5-inches tall, surrounded by two concentric radiation shields. The entire assembly is rigidly supported on four posts one of which is shown. These posts consist of cylinders of epoxyglass (G-10) spacing the components between their different temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call