Abstract

With the advantage of reversible shape‐morphing between two different permanent shapes under external stimuli, the two‐way shape‐memory aerogel is expected to become a preferred aerogel for developing practical applications in actuators, sensors, robotics, and more. Herein, the first two‐way shape‐memory liquid crystal elastomer (LCE)‐based aerogel is prepared by an orthogonal heat and light curing strategy coupled with an intermediate mechanical stretching step. The differential scanning calorimetry, temperature‐varied wide‐angle X‐ray scattering, and polarizing optical microscope results indicate that the aerogel possesses a liquid crystal phase and the insider mesogens are well‐oriented along the stretching direction. In addition to having superior compressibility and excellent shape stability, this LCE‐based aerogel can perform a reversible shape deformation during the heating/cooling cycles with a shrinkage ratio of 37%. The work, that is disclosed here, realizes a truly two‐way shape‐memory behavior rather than the one‐way shape deformation of traditional polymer aerogel materials, and may promote potential applications of this novel LCE‐based aerogel material in control devices, soft actuators, and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.