Abstract

Amisulpride is a second generation atypical antipsychotic drug. The management of psychosis exacerbation in late pregnancy or during lactation is often hampered by inadequate knowledge of risk to the baby from placental transfer or breast milk transfer of drugs. There is no specific information on adverse effects from amisulpride. To gather guiding information from one mother-baby pair, we conducted a drug concentration study on the fourth post-natal day and developed a novel liquid chromatography-tandem mass spectrometry method with application to the very small plasma volumes obtainable from a neonate, requiring 15 μL of plasma, and with application to human breast milk. Plasma and breast milk extracts, spiked with deuterated internal standard (amisulpride-d5) were separated isocratically with a buffered water-methanol-acetonitrile mobile phase. A tandem mass spectrometer in positive electrospray ionisation mode with multiple reaction monitoring was used for detection. Method linearity, sensitivity, imprecision, matrix effects, recovery, and overall process efficiency were satisfactory for milk and plasma. No interferences were found from a broad range of psychotropic and general drugs. The breast milk area under the concentration-time curve for the interval 0-12 hours was 10,726 mcg·h·L, corresponding to a mean breast milk concentration of 894 mcg/L. Breast milk amisulpride was 12-fold higher than the simultaneous plasma concentration. The baby's plasma amisulpride concentration was 10.5% of the maternal plasma concentration. An assay was developed that is suitable for therapeutic drug monitoring of amisulpride. Its application to breast milk and neonate plasma showed that amisulpride partitioned strongly into breast milk and that the neonate reached plasma levels that were more than desirable for a psychotropic drug.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.