Abstract

Liposomal formulations carrying chemotherapeutic drugs have demonstrated great potential as effective drug delivery systems. Smart nanoformulations decorated with targeting agents and probes are desired for site specific delivery of drugs and real time monitoring. In this study, we aimed to develop liposomal formulation loaded with doxorubicin and tagged with trastuzumab antibody (Ab) for targeting human epidermal growth factor receptor 2 (HER2) positive tumors. Liposomes were prepared by ethanol injection method using modified lipids to conjugate trastuzumab and radiolabel with Tc-99m radioisotope using DTPA for imaging by single photon emission computed tomography (SPECT). Doxorubicin was loaded using the active pH gradient method. The conjugation of Ab to liposomes was validated by SDS-PAGE and MALDI-MS. 99m Tc labeled liposomes encapsulating doxorubicin conjugated with antibody (99m Tc-Lip-Ab-Dox) and 99m Tc labeled liposomes encapsulating doxorubicin (99m Tc-Lip-Dox) were found to be stable in blood plasma and saline using chromatography method. The specificity of 99m Tc-Lip-Ab-Dox against HER2 receptor was evident from cell uptake and inhibition studies. Results also corroborated with confocal microscopy studies. In vivo studies in tumor bearing severe combined immunodeficient mice by SPECT imaging and biodistribution studies revealed higher uptake of 99m Tc-Lip-Ab-Dox in tumor and less accumulation in the liver compared to 99m Tc-Lip-Dox. In conclusion, liposomal nanoformulation for immunotargeting and monitoring of drug delivery was successfully formulated and evaluated. Encouraging results in preclinical studies were obtained with the radioformulation. Such smart radioformulations will not only serve the purpose of site-specific controlled release of drugs at the target site but also aid in optimizing the drug doses and schedule of cancer treatment by monitoring pharmacokinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.