Abstract

Since infectious diseases, particularly viral infections, have threatened human health and caused huge economical losses globally, a rapid, sensitive, and selective virus detection platform is highly demanded. Enzyme-linked immunosorbent assay (ELISA) with flat solid substrates has been dominantly used in detecting whole viruses for its straightforwardness and simplicity in assay protocols, but it often suffers from limited sensitivity, poor quantification range, and a time-consuming assay procedure. Here, a lipid-nanopillar-array-based immunosorbent assay (LNAIA) is developed with a nanopillar-supported lipid bilayer substrate with fluorophore-modified antibodies for rapid, sensitive, and quantitative detection of viruses. 3D nanopillar array structures and fluid antibodies with fluorophores facilitate faster and efficient target binding and rapid fluorophore localization for quick, reliable analysis on binding events with a conventional fluorescence microscopy setup. LNAIA enables quantification of H1N1 virus that targets down to 150 virus particles with 5-orders-of-magnitude dynamic range within 25 min, which cannot be achieved with conventional ELISA platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.