Abstract

We establish a Liouville type result for a backward global solution to the Navier-Stokes equations in the half plane with the no-slip boundary condition. No assumptions on spatial decay for the vorticity nor the velocity field are imposed. We study the vorticity equations instead of the original Navier-Stokes equations. As an application, we extend the geometric regularity criterion for the Navier-Stokes equations in the three-dimensional half space under the no-slip boundary condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.