Abstract
In this paper, we obtain a Liouville type theorem for a class of elliptic equations including the conformal Gaussian curvature equation $$-\Delta u=K(x)e^{2u}\quad {\rm in}\,\, {\mathbb{R}}^2,$$ where K(x) is a Holder continuous function in \({{\mathbb{R}}^2}\) that does not have a fixed sign near infinity. The main tool in our approach is an asymptotic formula for the solution at infinity and the method of moving planes. We also show how our Liouville theorem can be used to obtain a priori bound for solutions of the prescribing Gaussian curvature equation in S2, namely $$\Delta\, u+K(x)e^{2u}=1\, {\rm in}\, S^2,$$ where K(x) is Holder continuous and nonnegative in S2 but vanishes on a set with nonempty interior, a case left open in previous research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.