Abstract

Natural gas plays an important role in daily life and the petrochemical industry, but there are often large amounts of impurities which prevent the full use of methane in natural gas. Developing excellent adsorbents to purify CH4 from multi-component mixtures is crucial, but also faces great challenges. Here, by utilizing a ligand conformation preorganization strategy, we employ a flexible nonplanar hexacarboxylate ligand with C2 symmetry to successfully construct a robust microporous metal-organic framework {[Cu3(bmipia)(H2O)3]·(DMF)(CH3CN)2}n (GNU-1, bmipia = 5-[N,N-bis(5-methylisophthalic acid)amion] isophthalate) with an unprecedented topology. More importantly, the obtained GNU-1 not only exhibits good stability in acid-base and water environments, but also shows potential utility as an adsorbent for efficient separation and purification of natural gas under ambient conditions. The adsorption isotherms of GNU-1a (activated GNU-1) exhibit strong binding affinities for C2H6 and C3H8, a remarkable uptakes of C3H8 (6.64 mmol g-1) and C2H6 (4.6 mmol g-1) and an excellent selectivity of 330.1 and 17.5 for C3H8/CH4 and C2H6/CH4 mixtures, respectively, at 298 K and 1 bar. The breakthrough experiments demonstrate that the ternary CH4/C2H6/C3H8 mixtures are completely separated using a fixed-bed separator packed with GNU-1a at ambient temperature and also show great potential for recovering the C2H6 and C3H8 contents from natural gas. Finally, Grand Canonical Monte Carlo simulations are adopted to ascertain potential gas adsorption mechanisms. This work proves the feasibility of optimizing the structure and pore size of MOF materials by regulating the conformation of ligands for application in the field of light hydrocarbon adsorption/separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.