Abstract
The identifying code problem is a special search problem, challenging both from a theoretical and from a computational point of view, even for several graphs where other usually hard problems are easy to solve, like bipartite graphs or chordal graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs. In this work we study the problem of determining the cardinality of a minimum identifying code in block graphs (that are diamond-free chordal graphs). We present a linear-time algorithm for this problem, as a generalization of a linear-time algorithm proposed by Auger in 2010 for the case of trees. Thereby, we provide a subclass of chordal graphs for which the identifying code problem can be solved in linear time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.