Abstract

This paper presents a linearized polynomial mixed-integer programming model (PMIPM) for the integration of process planning and scheduling problem. First, the integration problem is modeled as a PMIPM in which some of the terms are of products of up to three variables, of both binary and continuous in nature. Then, an equivalent linearized model is derived from the polynomial model by applying certain linearization techniques. Although the linearized models have more variables and constraints than their polynomial counterparts, they are potentially solvable to the optimum in comparison to their equivalent polynomial models. Experiments show that the linearized model possesses certain characteristics that are absent from other models in the literature, and provides a fundamental framework for further research in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.