Abstract

This paper presents the derivation of a linearized model for flapper-nozzle type two-stage electrohydraulic servovalves from the nonlinear state equations. The coefficients of the linearized model are derived in terms of the valve physical parameters and fluid properties explicitly, and are useful for valve design and sensitivity analysis. When using this model structure to fit experimental frequency response data, the results render closer agreement than when using existing low order linear models. This model also suggests important servovalve dynamic properties such as the nonminimum phase zero and the transfer function relative degree, and how they relate to the valve component arrangement. Because of the small modeling errors over a wide frequency range, a high bandwidth control system can be designed. A robust performance controller is designed and implemented to demonstrate the utility of the model. [S0022-0434(00)03401-8]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.