Abstract
In this article, a decoupled and linearized compact finite difference scheme is proposed for solving the coupled nonlinear Schrödinger equations. The new scheme is proved to preserve the total mass and energy which are defined by using a recursion relationship. Besides the standard energy method, an induction argument together with an H1 technique are introduced to establish the optimal point‐wise error estimate of the proposed scheme. Without imposing any constraints on the grid ratios, the convergence order of the numerical solution is proved to be of with mesh size h and time step τ. Numerical results are reported to verify the theoretical analysis, and collision of two solitary waves are also simulated. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 840–867, 2017
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.