Abstract
In this work, a preconditioner is developed based on the linear coarse mesh finite difference (CMFD) formulation for the flexible generalized minimal residual (FGMRES) algorithm, and applied to accelerate within-group Krylov iterations based on the two-dimensional (2-D) method of characteristics (MOC). The conventional CMFD method is linearized by replacing the multiplicative updating operator with an additive correction operator in the prolongation step. The effectiveness of the linearized CMFD preconditioner for problems featuring steep flux gradients and high scattering ratios can be demonstrated by the numerical results for the IAEA LWR pool reactor problem. The total FGMRES iterations and computing time were decreased by 52.7% and 41.8%, respectively. However, only modest efficiency improvements were achieved for the 2-D C5G7 and the KAIST-2A benchmark problems, revealing the degraded performance of the linearized CMFD preconditioner for problems with strong local heterogeneities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.