Abstract

An improved linearized analog microwave photonic link (AMPL) with significant multioctave bandwidth performance is experimentally presented. The proposed AMPL configuration is based on a double dual-parallel Mach–Zehnder modulator and a differential balanced photodetector (BPD). Explicitly, a gallium arsenide (GaAs)-based modulators are used as opposed to the commonly known lithium niobate (LiNbO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ) modulators, due to its robustness in the harsh environment. The system configuration is designed to process a carrier suppressed double-sideband signal through the link, and then at the receiver, a carrier suppressed double-sideband signal is combined with an unmodulated optical carrier, which is transmitted through a polarization maintained (PM) optical fiber. In our experiment, only PM-based optical components are used for better system stability. The developed theoretical model of the proposed system illustrates the elimination of even-order distortions and a high suppression to the third-order intermodulation distortions at the BPD. Consequently, the fundamental signal to interference ratio of 60 dB was experimentally achieved. Furthermore, experimental results, simultaneously, demonstrate a significant increase of second-order spurious-free dynamic range and third-order spurious-free dynamic range by 19.5 and 3.1 dB, respectively, compared to the previously reported AMPL performances based on polarization multiplexing dual-parallel Mach–Zehnder modulator. To the best of our knowledge, this is the highest dynamic range AMPL system performance deploying GaAs electro-optic modulator which has most significant capabilities in managing RF signals and exhibits excessive performance in harsh operating environment in terms of thermal stability, power-handling, radiation resistance and longevity for aerospace, defense, and satellite-to-ground downlink communication system applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.