Abstract

AbstractWe present a polynomial time algorithm that for any graph G and integer k ≥ 0, either finds a spanning tree with at least k internal vertices, or outputs a new graph G R on at most 3k vertices and an integer k′ such that G has a spanning tree with at least k internal vertices if and only if G R has a spanning tree with at least k′ internal vertices. In other words, we show that the Maximum Internal Spanning Tree problem parameterized by the number of internal vertices k has a 3k-vertex kernel. Our result is based on an innovative application of a classical min-max result about hypertrees in hypergraphs which states that “a hypergraph H contains a hypertree if and only if H is partition connected.”KeywordsPolynomial TimeSpan TreeBipartite GraphNonempty SubsetPolynomial Time AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.