Abstract

Given a graph G=(V,E) and two vertices s,t ∈ V , s\neq t , the Menger problem is to find a maximum number of disjoint paths connecting s and t . Depending on whether the input graph is directed or not, and what kind of disjointness criterion is demanded, this general formulation is specialized to the directed or undirected vertex, and the edge or arc disjoint Menger problem, respectively. For planar graphs the edge disjoint Menger problem has been solved to optimality [W2], while the fastest algorithm for the arc disjoint version is Weihe's general maximum flow algorithm for planar networks [W1], which has running time \bf O (|V| log |V|) . Here we present a linear time, i.e., asymptotically optimal, algorithm for the arc disjoint version in planar directed graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.