Abstract

There has been growing interest in developing more effective learning machines for tensor classification. At present, most of the existing learning machines, such as support tensor machine (STM), involve nonconvex optimization problems and need to resort to iterative techniques. Obviously, it is very time-consuming and may suffer from local minima. In order to overcome these two shortcomings, in this paper, we present a novel linear support higher-order tensor machine (SHTM) which integrates the merits of linear C-support vector machine (C-SVM) and tensor rank-one decomposition. Theoretically, SHTM is an extension of the linear C-SVM to tensor patterns. When the input patterns are vectors, SHTM degenerates into the standard C-SVM. A set of experiments is conducted on nine second-order face recognition datasets and three third-order gait recognition datasets to illustrate the performance of the proposed SHTM. The statistic test shows that compared with STM and C-SVM with the RBF kernel, SHTM provides significant performance gain in terms of test accuracy and training speed, especially in the case of higher-order tensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.