Abstract
This paper proposes a linear stochastic state space model for electrocardiogram signal processing and analysis. The model is obtained as a discretized version of Wiener process acceleration model. The model is combined with a fixed-lag Rauch-Tung-Striebel smoother to perform on-line signal denoising, feature extraction, and beat classification. The results indicate that the proposed approach outperforms a conventional FIR filter in terms of improved signal-to-noise ratio, and that the approach can be used for highly accurate online classification of normal beats and premature ventricular contractions. The benefits of the model include the possibility to use closed-form solutions to the optimal filtering and smoothing problems, quick adaptation to sudden changes in beat morphology and heart rate, simple and fast initialization, preprocessing-free operation, intuitive interpretation of the system state, and more.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.