Abstract
We present a rigorous convergence analysis of a linear spline Markov finite approximation method for computing stationary densities of random maps with position dependent probabilities, which consist of several chaotic maps. The whole analysis is based on a new Lasota–Yorke-type inequality for the Markov operator associated with the random map, which is better than the previous one in the literature and much simpler to obtain. We also present numerical results to support our theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.