Abstract

The focus of this study is a 3D inverse scattering problem underlying non-invasive reconstruction of piecewise-homogeneous (PH) defects in a layered semi-infinite solid from near-field, surface elastic waveforms. The solution approach revolves around the use of Green's function for the layered reference domain and a generalization of the linear sampling method to deal with the featured class of PH configurations. For a rigorous treatment of the full-waveform integral equation that is used as a basis for obstacle reconstruction, the developments include an extension of the Holmgren's uniqueness theorem to piecewise-homogeneous domains and an in-depth analysis of the situation when the sampling point is outside the support of the obstacle that employs the method of topological sensitivity. Owing to the ill-posed nature of the featured integral equation, a stable approximate solution is sought via Tikhonov regularization. A set of numerical examples is included to demonstrate the feasibility of 3D obstacle reconstruction when the defects are buried in a multi-layered elastic solid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.