Abstract
We describe a framework for the verification of Bayesian model calibration routines. The framework is based on linear regression and can be configured to verify calibration to data with a range of observation error characteristics. The framework is designed for efficient implementation and is suitable for verifying code intended for large-scale problems. We propose an approach for using the framework to verify Markov chain Monte Carlo (MCMC) software by combining it with a nonparametric test for distribution equality based on the energy statistic. Our matlab-based reference implementation of the framework is shown to correctly distinguish between output obtained from correctly and incorrectly implemented MCMC routines. Since correctness of output from an MCMC software depends on choosing settings appropriate for the problem-of-interest, our framework can potentially be used for verifying such settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Verification, Validation and Uncertainty Quantification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.