Abstract

There exist many heterogeneous data sources that are closely related to gene regulatory networks. These data sources provide rich information for depicting complex biological processes at different levels and from different aspects. Here, we introduce a linear programming framework to infer the gene regulatory networks. Within this framework, we extensively integrate the available information derived from multiple time-course expression datasets, ChIP-chip data, regulatory motif-binding patterns, protein-protein interaction data, protein-small molecule interaction data, and documented regulatory relationships in literature and databases. Results on synthetic and real experimental data both demonstrate that the linear programming framework allows us to recover gene regulations in a more robust and reliable manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.