Abstract
AbstractThe need for fully autonomous mobile robots has surged over the past decade, with the imperative of ensuring safe navigation in a dynamic setting emerging as a primary challenge impeding advancements in this domain. In this article, a Safety Critical Model Predictive Control based on Dynamic Feedback Linearization tailored to the application of differential drive robots with two wheels is proposed to generate control signals that result in obstacle‐free paths. A barrier function introduces a safety constraint to the optimization problem of the Model Predictive Control (MPC) to prevent collisions. Due to the intrinsic nonlinearities of the differential drive robots, computational complexity while implementing a Nonlinear Model Predictive Control (NMPC) arises. To facilitate the real‐time implementation of the optimization problem and to accommodate the underactuated nature of the robot, a combination of Linear Model Predictive Control (LMPC) and Dynamic Feedback Linearization (DFL) is proposed. The MPC problem is formulated on a linear equivalent model of the differential drive robot rendered by the DFL controller. The analysis of the closed‐loop stability and recursive feasibility of the proposed control design is discussed. Numerical experiments illustrate the robustness and effectiveness of the proposed control synthesis in avoiding obstacles with respect to the benchmark of using Euclidean distance constraints.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.