Abstract
Abstract Battery management systems require mathematical models of the battery cells that they monitor and control. Commonly, equivalent circuit models are used. We would like to be able to determine the parameter values of their equations using simple tests and straightforward optimizations. Historically, it has appeared that nonlinear optimization is required to find the state-equation time constants. However, this article shows that the relaxation interval following a current or power pulse provides data that can be used to find these time constants using linear methods. After finding the time constants, the remaining parameter values can also be found via linear regression. Overall, only linear algebra is used to find all of the parameter values of the equivalent circuit model. This yields fast, robust, and simple implementations, and even enables application in an embedded system, such as a battery management system, desiring to retune its model parameter values as its cell ages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.