Abstract

This paper concerns a stochastic construction of probabilistic coherent spaces by employing novel ingredients (i) linear exponential comonad arising properly in the measure-theory (ii) continuous orthogonality between measures and measurable functions.A linear exponential comonad is constructed over a symmetric monoidal category of transition kernels, relaxing Markov kernels of Panangaden's stochastic relations into s-finite kernels. The model supports an orthogonality in terms of an integral between measures and measurable functions, which can be seen as a continuous extension of Girard-Danos-Ehrhard's linear duality for probabilistic coherent spaces. The orthogonality is formulated by a Hyland-Schalk double glueing construction, into which our measure theoretic monoidal comonad structure is accommodated. As an application to countable measurable spaces, a dagger compact closed category is obtained, whose double glueing gives rise to the familiar category of probabilistic coherent spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.