Abstract

The two-layer crossing minimization problem (TLCM), given a bipartite graph G with n vertices and a positive integer k, asks whether G has a two-layer drawing with at most k crossings. We consider a simple generalization of TLCM called leaf-edge-weighted TLCM (LEW-TLCM), where we allow positive weights on edges incident to leaves, and show that this problem admits a kernel with O(k) edges provided that the given graph is connected. As a straightforward consequence, LEW-TLCM (and hence TLCM) has a fixed parameter algorithm that runs in 2O(klog⁡k)+nO(1) time which improves on the previously best known algorithm with running time 2O(k3)n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.