Abstract

This contribution presents a flatness based solution to the tracking for linear systems in differential operator representation. Since the differential operator representation is a flat system representation, tracking controllers can easily be designed using dynamic output feedback. Then, the differential operator approach for flatness based tracking of linear systems is extended to non-linear systems. The design of the resulting linear time varying dynamic output feedback controller is based on a linearization about the trajectory, which directly yields the differential operator representation. Different from the non-linear flatness based controller design the new approach uses linear methods, both in stabilizing the tracking and in computing the output feedback controller. The proposed design procedure assures exact tracking in the steady state when no disturbances are present. A simple example demonstrates the design of a dynamic output feedback controller for the tracking of a non-linear system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.