Abstract

A 29.5-GHz power amplifier (PA) with a codesigned transformer-based matching network and a second harmonic control network is presented here. The efficiency of the transformer is well studied, and an accurate analytical solution to a high-efficiency transformer has been proposed. Guiding by it, a high-efficiency 1:2 transformer has been designed. A series <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LC</i> network has been added between the drain and the source as a second harmonic control network. Due to the codesign, the cost of the harmonic control network is negligible. The PA achieves a 3-dB gain bandwidth from 26.9 to 33.2 GHz (21%). The <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$P_{\mathrm {1\, dB}}$ </tex-math></inline-formula> exceeds 16.5 dBm with power added efficiency (PAE) beyond 27% from 27.5 to 30 GHz. At 29.5 GHz, the proposed PA achieves a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$P_{\mathrm {1 \,dB}}$ </tex-math></inline-formula> of 17.4 dBm with 30% PAE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1dB</sub> and a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$P_{\mathrm {sat}}$ </tex-math></inline-formula> of 17.8 dBm with the peak PAE of 30.7%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call