Abstract

In the search for a reliable but simple model for the biodegradation processes of an activated sludge wastewater treatment plant, this paper presents a multi-model which is valid for the global operating region of a standard carbon and nitrogen removing facility. In a first step, locally valid linear models are derived. Two linearization procedures are compared. The first procedure is the classical Taylor series expansion, while the second is a newly developed linearization procedure based on weighted linear combinations. In a second step, the locally valid models are combined to obtain one globally valid multi-model. Previous work has focused on the most basic configuration of one anoxic and one aerated tank followed by a point settler [Smets, I.Y., Haegebaert, J.V. and Carrette, R. and Van Impe, J.F., 2003, Water Research, 37, 1831 – 1851]. Refinements to the methodology are however needed (and presented here) once the influent flow rate range is increased and the benchmark configuration, proposed by the COST 682 working group no. 2, is taken as the simulation protocol. The main advantage of the obtained linear model (structure) remains the alliance of high predictive power with low complexity, rendering the multi-model fit for on-line optimization and control schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.