Abstract

In this letter, we study distributed optimization, where a network of agents, abstracted as a directed graph, collaborates to minimize the average of locally-known convex functions. Most of the existing approaches over directed graphs are based on push-sum (type) techniques, which use an independent algorithm to asymptotically learn either the left or right eigenvector of the underlying weight matrices. This strategy causes additional computation, communication, and nonlinearity in the algorithm. In contrast, we propose a linear algorithm based on an inexact gradient method and a gradient estimation technique. Under the assumptions that each local function is strongly-convex with Lipschitz-continuous gradients, we show that the proposed algorithm geometrically converges to the global minimizer with a sufficiently small step-size. We present simulations to illustrate the theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.