Abstract
Motivated by problems from Chemical Reaction Network Theory, we investigate whether steady state ideals of reversible reaction networks are generated by binomials. We take an algebraic approach considering, besides concentrations of species, also rate constants as indeterminates. This leads us to the concept of unconditional binomiality, meaning binomiality for all values of the rate constants. This concept is different from conditional binomiality that applies when rate constant values or relations among rate constants are given. We start by representing the generators of a steady state ideal as sums of binomials, which yields a corresponding coefficient matrix. On these grounds we propose an efficient algorithm for detecting unconditional binomiality. That algorithm uses exclusively elementary column and row operations on the coefficient matrix. We prove asymptotic worst case upper bounds on the time complexity of our algorithm. Furthermore, we experimentally compare its performance with other existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.