Abstract

A novel approach for the computation of the spherical harmonic coefficients of the gravity field of a constant density polyhedron is presented. The proposed method is based on the expression of these coefficients as the volume integral of solid harmonics. It is well known that the divergence theorem leads to an expression of these volume integrals as surface integrals. We show that these surface integrals can be expressed as the sum of line integrals along the edges of the polyhedron. In contrast to previous approaches, the values of the spherical harmonic coefficients at a given degree and order result directly from the computation of the line integrals. The performed numerical implementation revealed the stability of the proposed algorithm up to degree 360 for a prismatic test source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call